

LA-UR-18-23103

Approved for public release; distribution is unlimited.

Title: Pearson correlation coefficients applied to correlated physics of

fission

Author(s): Arthur, Jennifer Ann

Intended for: University research group meeting

Issued: 2018-04-11

Pearson correlation coefficients applied to correlated physics of fission

Jennifer Arthur 4/17/2018

Pearson correlation coefficient

 Can range from completely anti-correlated (-1), to uncorrelated (0), to completely correlated (1)

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

- Definitions:
 - n is the number of codes being compared
 - x_i is the value of a single observable of interest for the ith code
 - y_i is the value of a single nuclear data item of interest for the ith code
 - \bar{x} is the mean of all values of x
 - \bar{y} is the mean of all values of y

Applied to correlated physics of fission

- Observables of interest:
 - Singles (R₁)
 - Doubles (R₂)
 - Leakage multiplication (M_L)
- Nuclear data items of interest:
 - Mean of spontaneous fission P(v)
 - Width of spontaneous fission P(v)
 - Mean of induced fission P(v)
 - Width of induced fission P(v)

Applied to correlated physics of fission

- Observables of interest:
 - Singles (R₁)
 - Doubles (R₂)
 - Leakage multiplication (M_L)
- Other nuclear data items of interest:
 - Mean of spontaneous fission $\chi(E)$
 - Width of spontaneous fission $\chi(E)$
 - Mean of induced fission $\chi(E)$
 - Width of induced fission $\chi(E)$

Models

- Calculated correlation coefficients for:
 - All BeRP-W benchmark simulated configurations
 - Between MCNP6.2, MCNP6.2/FREYA,
 MCNP6.2/CGMF, and PoliMi
- All spontaneous fission assumed to come from Pu-240, and all induced fission from Pu-239

P(v) results

P(v) results

- Consistently large correlations between:
 - $-R_2$ and SF \bar{v}
 - M_I and SF \bar{v}
 - $-R_2$ and IF \bar{v}
 - M_L and IF \bar{v}

$\chi(E)$ results

$\chi(E)$ results

- Consistently large anti-correlations between:
 - $-M_1$ and IF $\chi(E)$ mean
 - $-M_1$ and SF $\chi(E)$ mean
 - $-R_2$ and SF $\chi(E)$ width
 - $-M_L$ and SF $\chi(E)$ width
 - $-R_2$ and IF $\chi(E)$ width
 - $-M_L$ and IF $\chi(E)$ width

Conclusions

- Interesting correlations exist between observables of interest and correlated physics of fission nuclear data items of interest
- P(v) correlations are included in correlated physics Annals of Nuclear Energy submitted paper
- $\chi(E)$ correlations to be included in thesis

